Paragonimus and Paragonimiasis in Korea

Dong Wik Choi

Department of Parasitology, Kyungpook National University
School of Medicine, Taegu 700-422, Korea

Abstract: The lung fluke, Paragonimus, and lung fluke disease, were reviewed, especially on the works performed in Korea. Among 43 species of Paragonimus recorded in the world literature, P. westermani, P. pulmonalis, and P. iloktsuenensis are known to distribute in Korea. Biological studies on P. westermani have revealed that its snail intermediate host is Semisulcospira spp. and major second intermediate hosts are crabs such as Eriocheir japonicus and E. sinensis or crayfish such as Cambaroides similis and C. dauricus. The final hosts other than man are dogs, cats, pigs, and wild animals. Paragonimiasis has been known to distribute widely over the south Korea, however, the prevalence among people and intermediate hosts is gradually decreasing in recent years. In Korean people, the lung fluke have caused pulmonary infections in a great many of cases but as well extrapulmonary ones including cerebral, spinal, subcutaneous, hepatic, splenic, abdominal, urinary, gynecologic, and other types. The definite diagnosis of paragonimiasis can be executed by the recovery of eggs from sputum or feces of patients, however, immunological methods such as intradermal test, complement-fixation test, precipitin reactions, immunofluorescent techniques, enzyme-linked immunosorbent assay (ELISA) are greatly helpful for egg-negative or extrapulmonary cases. Various drugs have been introduced for the treatment of paragonimiasis, and among them, bithionol, niclofolan and praziquantel have shown high therapeutic efficacy. The most recommendable one is considered praziquantel. For control of this disease, mass chemotherapy of patients seems to be the most efficient and feasible measure.

Key words: Paragonimus westermani, P. iloktsuenensis, morphology, biology, distribution, pathology, symptoms, diagnosis, chemotherapy, review

INTRODUCTION

The lung fluke disease in man, paragonimiasis, with accompanying persistent cough, hemoptysis, and chest pain, has been traditionally known as “tojil” or literally “earth-borne disease” by native doctors in Korea. Although a considerable number of papers on the Paragonimus and paragonimiasis has been published in Korea, the present review deals mainly with the references reported after the World War II.

Since the case report of abdominal paragonimiasis was published by Choi (1948), almost all of the reports concerning Paragonimus in the 1950’s were confined to cases of extrapulmonary paragonimiasis or epidemiological studies. Parasitological researches gradually became refined after the establishment of the Korean Society for Parasitology in 1959. Recently, with continuous epidemiological surveys to determine the endemcity of localities, marked advance in research of paragonimiasis have been shown, especially in the immunodiagnostic and chemo-
therapeutic fields.

SPECIES AND MORPHOLOGY

1. Species of Paragonimus

From the discovery of *P. rudis* in the lung of an otter by Diesing in 1885 to the report of *P. macacae* by Sandosham in 1953, only 11 additional species have been listed for about a 100-year period. However, 32 new species have been listed during a period of 20 years from *P. skrjabini* in 1959 to *P. westermani filipinus* in 1979.

Recently, 43 species of *Paragonimus* including *P. westermani* have been reported in several countries, but some of these are considered as synonyms (Table 1).

According to Miyazaki (1982), 8 species known to develop and cause disease in man are *P. westermani, P. skrjabini, P. miyazakii, P. heterotremsus, P. africanus, P. uterobilateralis, P. mexicanus, and P. pulmonalis*. For a few of them, however, the question of synonym remains uncertain. Among these, *P. miyazakii* found in Japan and *P. skrjabini* in China and Thailand do not reach the lung, but the flukes usually develop in ectopic locations, especially in the subcutaneous nodules.

Paragonimus westermani (Kerbert, 1878) had been believed to be the only species of the genus *Paragonimus* existing in Korea, until Yokogawa et al. (1971) reported the species, *P. ilohtsueneensis* from the crabs in the delta area of the Nakdong River. After the discovery of *P. pulmonalis* (Baelz, 1880) by Miyazaki (1978), the total number of species found to be distributed in Korea was brought to three (Figs. 1, 2 & 3).

It has been known that there are 2 distinct forms, a small and other larger ones, of the lung fluke which have been called *P. westermani* for a century (Chyu, 1966; Kim et al., 1971; Miyazaki, 1978). Miyazaki (1978) reported that *P. westermani* has diploid chromosomes (2n = 22) and bisexual reproduction, while *P. pulmonalis* has triploid chromosomes (3n = 33) and reproduces parthenogenetically (Table 2). They are also separated by the contents of the seminal recep-
tacle; it is filled with sperms in bisexual form, while in the parthenogenetic form, it is occupied by eggs and vitelline cells instead of sperms. He also noticed that in *P. westermani*, the eggs, larvae, and adults are smaller and were found mainly in tropical Asia, whereas *P. pulmonalis* is distributed mainly in Japan, Korea, and Taiwan.

However, Yokogawa (1982) proposed that *P. pulmonalis* might be a synonym of *P. westermani*. At present, it has been clarified by Miyazaki (1978) that there are two forms of *P. westermani* in Korea. Miyazaki (1978 & 1979) stressed in recent years that the validity of *P. pulmonalis* has been recognized by population genetics and cytological studies. Ihm and Ahn (1979) reported, supporting Miyazaki's opinion, that the majority in Korea is of the parthenogenetic type.

2. Ultrastructure

In this review, only ultrastructural studies of

<p>| Table 2. Two types of Paragonimus westermani (Kerbert, 1878) reported by Miyazaki in 1978 |
|--|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Type</th>
<th>Worm size</th>
<th>Chromosome</th>
<th>Reproduction</th>
<th>Spermatogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. pulmonalis</td>
<td>large group</td>
<td>triploid</td>
<td>parthenogenetic</td>
<td>none or few</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$3n=33$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. westermani</td>
<td>small group</td>
<td>diploid</td>
<td>bisexual</td>
<td>abundant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2n=22$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIOLOGY AND LIFE CYCLE

The adult Paragonimus is usually harbored encapsulated in pockets of the lungs and less frequently in the other organs. The eggs deposited by the adult escape from the pulmonary pockets through the bronchioles, are voided in the sputum, or are swallowed and passed in the feces. The discharged eggs require at least 2 weeks for complete embryonation and hatching, and the miracidia escape to become free-swimming.

After entering the appropriate snail host, a sporocyst and 2 redia generations are produced, followed by the development of microcercous cercariae, about 20 of which may be seen at one time within the redia during a period of several weeks (Choi et al., 1982). When the crustacean host ingests the snail, host infested with the cercariae, the cercariae encyst to become metacercariae, usually in the vessels of the gills, liver, and muscles of the cephalothorax of the crustacean host. Sometimes the cercariae, after leaving the snail, penetrate the crustacean host.

It was reported that the genus Semisulcospira snail plays a role as the first intermediate host, while the crabs, Eriocheir japonicus and E. sinensis, the crayfish, Cambaroides similis and C. dauricus (found in North Korea), and the shrimp, Macrobrachium nipponensis, play roles as the second intermediate hosts of Paragonimus westermani in Korea (Soh, 1962; Soh et al., 1964b & 1966; Chyu, 1966; Chyu and Lee, 1966; Kim, 1984; Chung, 1983). Seo and Kwak (1972) indicated that the second intermediate host of P. iloktsuenensis is Helice tridens and Sesarma dehaani in Korea.

When the definitive host ingests the raw flesh of the second intermediate host infested with the metacercariae, the metacercariae excyst in the small intestine, especially in the duodenum, migrate through the intestinal wall, and reach the abdominal cavity in 3~6 hours. They enter and remain in the abdominal wall for several days before migration through or around the
diaphragm to the pleural cavity and lungs, finally arriving at the vicinity of the bronchioles where they develop to adult worms. Lee (1966) suggested that the excysted metacercariae in the abdominal muscle seemed not to return to the peritoneal cavity but migrate upward along muscle fibers, while the worms inoculated into various parts of the body showed a tendency to migrate toward the thoracic cavity without regard to the suitability of the animals as experimental hosts.

The natural definitive hosts of *Paragonimus westermani* other than man include such felines as tigers, lions, domestic cats, wildcats, leopards, and some domestic animals like dogs and pigs (Min, 1981), whereas the host of *P. iloktsuenensis* is the rat (Seo and Koo, 1971). Mice, guinea pigs, cats and dogs are known to be experimental definitive hosts of *P. iloktsuenensis* (Seo and Kwak, 1972; Seo and Lee, 1973; Lee et al., 1989b).

As for the distribution of adult *P. westermani* in dogs, Soh et al. (1962) revealed that the flukes were found in the thoracic cavity and viscera including the lungs 84.0%, from the abdominal cavity and viscera 15.0% and in arachnoidal tissue 0.2%. Lee et al. (1976) reported that only 15.8% of the immature worms reached the pleural cavity or lungs of unfavorable hosts, such as mice, gerbills, hamsters, rats and rabbits.

As for the biological studies on *P. iloktsuenensis*, Seo and Kwak (1972) reported that the recovery and infection rates for *P. iloktsuenensis* in mice were relatively high, although the worms recovered were immature. Seo and Lee (1973) reported that the recovery rate for *P. iloktsuenensis* from rats was between 6.7% and 25.0%. Lee et al. (1989b) found that the recovery rates in cats and dogs were 12.7% and 21.0%, respectively. Kang et al. (1975) reported that the density pattern of the metacercariae in *Sesarma dehaani* was well fitted to the negative binomial distribution.

Several biochemistry studies have been carried out to determine the metabolism of *Paragonimus*. Kang et al. (1963) suggested that there seemed to be a tissue specificity in the distribution of glycogen, nucleic acids, fat, and polyphenol oxidase in its body. Chun (1966) demonstrated the activity of polyphenol oxidase from the vitelline gland and eggs of the fluke by histochemical method. Kang et al. (1965a) found that adult *P. westermani* ingested Cr⁶¹-tagged RBC in cats and dogs. Park (1971) found that muscular organs such as the suckers and pharynx showed considerable density of exogenous C¹⁴-glucose compared with other organs. Ahn and Seo (1972) detected several kinds of amino acids and organic acids from the homogenate of the fluke incubated in a medium containing 1 μCi/ml of D-C¹⁴-glucose by paper chromatography.

Lee (1963) revealed 13 amino acids from the cyst content and body constituents of *P. ohirai*. Lee et al. (1964) detected alanine, methionine, valine, leucine, lysine, arginine, tyrosine, proline, and histidine from the hydrolysate of *P. westermani*. Min and Seo (1966) found that the activity of the transaminases, GOT and GPT in *P. westermani* was higher than that of such lumendo-welling trematodes as *Clonorchis sinensis* and *Eurystroma pancreaticum*. Lee (1967) revealed that the lactic dehydrogenase activity in *P. westermani* increased as the incubation temperature or substrate concentration increased. Lee and Seo (1967) also determined the activity of malic dehydrogenase and reported results similar to those of Lee (1967). Chu et al. (1972) revealed that carbonic anhydrase in *P. westermani* was distributed in the mucous membrane, vitelline gland cells, and the eggs. Huer et al. (1985) reported that the protein composition of *P. westermani* showed profound changes at 8 and 12 weeks after infection.

GEOGRAPHICAL DISTRIBUTION

The geographic distribution of *P. westermani* in Korea is shown in Figs. 4 & 5.

A number of surveys to determine the infestation status of the first and the second intermediate hosts, fresh-water snails, and crayfish (sometimes crabs and shrimps) with the larvae of *Paragonimus* have been carried out. Fig. 4
presents infestations of the intermediate host with the larvae in the reported endemic foci. Also, Fig. 5 shows the prevalence or positive rate by intradermal test using *Paragonimus* antigen before 1985 by localities.

1. **Kyonggi-do** (Kyonggi Province): Yun (1965) reported that the prevalence of paragonimiasis among the school children in 174 primary schools from 169 Myons in 18 Guns by intradermal test with *Paragonimus* antigen was 4.9% (937/19,345), and the rate was higher in the male (5.5%) than in the female (4.0%). The infestation rate of crayfish with the metacercaria in Kyonggi-do was 1.1% (271/25,640).

Similar investigations have been carried out by Kim *et al.* (1967), Lee *et al.* (1979 & 1980b), and Min and Chun (1987). They reported that the percentage of positive dermal reactions to *Paragonimus* antigen among school children and residents in Kanghwa-gun (County) varied from 15% to 28%, and fresh-water crayfish were either scarce or absent. Afterwards, Min (1980) reported that the crayfish in the district of Seoul is no longer an infection source of human paragonimiasis.

2. **Chungchonnam-do** (Chungnam Province): Kim *et al.* (1967) found that the prevalence rate for paragonimiasis among residents in Huksok-ri (village), Kuksong-myon, Taedok-gun was 7.6%, and the infestation rate for *Paragonimus* metacercaria in crayfish was 4.2%. Min and Hong (1974) reported the higher positive
rate (12.7%) of dermal reactions in residents of Chongyang-gun, but no positive dermal reaction with *Paragonimus* antigen was found in children less than 9 years of age.

3. Kangwon-do (Kangwon Province): Lee *et al.* (1981) reported results in which the prevalence rate of the lung fluke among residents was 14.5% and the metacercarial rate from crayfish, 20.9%. The average number of metacercariae per positive crayfish was 0.56 in Hoengsong-gun.

4. Chollanam-do (Chonnam Province): Kohung-gun is well-known for its high endemicity of paragonimiasis. After World War II, Chyu (1957) reported for the first time on the high prevalence (52.5%) of paragonimiasis among residents in Kohung-gun.

Kang *et al.* (1964d) surveyed the prevalence of paragonimiasis (20.1%) in residents and school children by intradermal test, and found the highest prevalence (46.7%) in the age group of 16-to-20 years. Ahn and Lee (1964) reported that cercarial rate of *Paragonimus in Semisulco-
spira snails was 0.2% and the metacercarial rates in crabs and crayfish were 44.0% and 49.4%, respectively.

Rim et al. (1980) summarized survey findings in Podu-myon, where the positive dermal reaction with Paragonimus antigen among residents was 56.9%, and the metacercarial rate of crabs collected from markets was 25% and the average number of metacercariae per positive crab was 0.6. Such results have been reported by Chun (1970) in Haenam-gun, Ahn et al. (1974) in Yochon-gun, Ahn et al. (1979) in Wando-gun, Lee et al. (1980 a) in Bosong-gun, and Lee et al. (1980 c) in Changhung-gun.

It was found that the percentage of positive dermal reactions among residents and school children varied from 7% to 61% and the metacercarial rate varied from 4.2% to 49.4% from crayfish and from 5.5% to 66.7% from crabs.

Kim et al. (1985) reported that the prevalence of paragonimiasis in the islanders of Bogildo (islet) was 10.2%, the cercarial rate in the snail was 24.2%, and the metacercarial rate in the crayfish was 65.4%; and the average number of metacercariae per positive crayfish was 6.5.

5. Kyongsangnam-do (Kyongnam Province): Lee (1958) studied infestation with the metacercaria in the crab host and the prevalence of paragonimiasis in Taedong-myon, Changwon-gun. Sadun et al. (1959) surveyed the epidemiology in Sangdong and Sannae myons, Milyang-gun. Ahn et al. (1966) reviewed the high prevalence of Paragonimus in snail and human hosts in Namhae-gun. The results of the studies were as follows: the percentage of positive dermal reactions among residents was high (43.7 to 60.4%) and the metacercarial infestation rate in crabs was also high (59.0 to 94.6%). In Hadong-gun, Kim et al. (1979) found that the positive dermal reaction with Paragonimus antigen among residents was relatively high, 31.5%. The rate was 35.2% in male and 24.5% in female. Because of the low density of crayfish in the mountain streams and a significant reduction in the incidence of Paragonimus larvae from the crayfish, the incidence of paragonimiasis among residents would decrease in the near future.

6. Kyongsangpuk-do (Kyungpook Province): Park (1961) conducted clinical observations on 179 cases of paragonimiasis. Park and Choi (1974) reported that crayfish were found in 65 small mountainous streams close to the temples, but no crayfish were found in the rivers. The crayfish from four out of 65 streams harbored Paragonimus metacercariae, which were abundant in the cephalothorax and a few on the pericardiac wall, and the number of metacercariae per positive crayfish ranged from 2.1 to 5.7.

Kim et al. (1974) conducted a survey of paragonimiasis and found that the prevalence of paragonimiasis among residents based on the positive dermal reaction with Paragonimus antigen was 4.3% (693/16,106). The positive rate for Paragonimus was higher for male than for female, and the rate 1.4% (46/1,883) in Taegu.

From 1977 to 1988, a resurvey of Paragonimus in 5 endemic foci of Kyungpook Province had been conducted by Choi and his associates.

Chilgok-gun: Kasan-myon has been known as an endemic focus of Paragonimus. Sohn and Choi (1977) carried out a survey of the endemic distribution of Semisulcospira snails and Cambaroides crayfish in the streams and the prevalence of the lung fluke among residents. They found an abundance of snails and crayfish in the streams and a high infection rate of Paragonimus in residents, 23.4% by intradermal test.

Kim and Choi (1977) found that the infection rate for the fluke in residents by intradermal test was 5.4%, and a difference in the age and sex specific rates was noted. Lee and Choi (1979) reported that the positive dermal reaction with Paragonimus antigen in 496 school-children was 9.9%.

Because of the low density of snails and crayfish in the streams and failure to demonstrate Paragonimus larvae from the hosts, the 4 localities in Chilgok-gun, where they studied, were no longer the endemic foci of paragonimiasis.

Uisung-gun: The prevalence of paragonimiasis among residents in the 3 communities
varied from 1.4% to 7.9%, with an average rate of 4.0% (Choi and Hwang, 1980). The average rate in school children was 3.6% (Choi et al., 1981). There was no significant difference in the rate of infection between residents and schoolchildren. They indicated that paragonimiasis is no longer an important endemic disease in UiSong-gun.

Talsung-gun: Choi et al. (1982 & 1983) reported that the population density of crayfish in the endemic areas and the infection of crayfish with the metacercaria of Paragonimus had decreased drastically over the 8-year period from 1974 to 1982.

Andong-gun: Park et al. (1984) conducted a survey on snail and crayfish hosts of Paragonimus and found that the density of snails in the stream was low, and no Paragonimus cercaria was found in the snails. It was almost impossible to find crayfish in the streams, but the metacercaria of Paragonimus was still found from the crayfish.

Youngpung-gun: The density of snails and crayfish in the stream of Roja village was somewhat higher than that in Daechon village. No Paragonimus cercaria was found in either stream but Paragonimus metacercaria was found from the crayfish collected in Roja stream (Lee and Choi, 1984).

Chungsong-gun: Choi et al. (1987) conducted an intermediate host survey of Paragonimus and reported that the density of snails was relatively high in all of the streams, but no Paragonimus cercaria was found. The density of crayfish was very low, and metacercariae were found from the crayfish collected in the streams of Songjae and Kalchon villages.

UlcHin-gun: The prevalence of paragonimiasis among residents was 25.8% by the Paragonimus intradermal test (Joo et al., 1985). The population density of the crayfish ranged from 1 to 13, with an average of 4, and 15% of the crayfish harbored the metacercaria of Paragonimus (Hong et al., 1986). A recent survey (Suh and Joo, 1990) indicated that paragonimiasis still remained prevalent among residents of Ulchin county.

7. Cheju-do (Quelpart Island): Thirty-two percent of the primary, middle and high school boys and girls showed positive dermal reactions with Paragonimus antigen. The sexual differences in the rate of positivity were 25.2% in males and 18.8% in females (Kang et al., 1964c & 1965c). The infestation rates for Paragonimus metacercariae in 2,377 crabs, Eriocheir japonicus varied from 0 to 100%, with an average of 43.5% (Kang et al., 1964b). Kang et al. (1965b) surveyed the relationship between the complaints of paragonimiasis symptoms and eating of crabs among residents. Kim (1969c) reported that the infestation rate of snail host with Paragonimus cercaria was high in the area where human association was more frequent. The distribution of Paragonimus metacercariae in infected crabs varied by body sites, the most frequently found in the gills, and then in the legs, internal organs and thoracic muscle in decreasing order.

Joo (1979) reported that 2.3% of ROK army soldiers showed positive dermal reactions to Paragonimus antigen, and the highest prevalence was found among the soldiers from Cheju-do and the lowest from Seoul City.

The positive dermal reactions to Paragonimus antigen were 22.0% in Masan and 15.2% in Kongju sanatoria patients (Choi et al., 1984).

PATHOLOGY AND SYMPTOMATOLOGY

1. Pathology

Although there are many conflicting theories as to the pathogenesis of the formation of the parasitic cyst in the lungs, two theories, in general, have had favorable acceptance. (1) The theory of softening of the lung tissue: The adult Paragonimus westermani parasitizes the lung parenchyma and exerts compression on the surrounding tissues including the alveoli, bronchioles and capillaries, with a resultant reactive inflammation followed by softening cystic space; this cystic space then surrounded by a fibrous wall, forming the parasitic cyst. (2) The bronchiectatic theory: Columnar epithelium lines the
inner wall of the cystic lesion, along with the smooth muscle bundles in the wall of the cyst.

Chung (1971) suggested, however, that the type of worm cyst seemed to be determined only by the relationship between its location and the presence of bronchi in the light of the fact that there are two kinds of cysts, one due to softening or collapse of the pulmonary tissue and the other due to bronchiectatic change. In human material, nevertheless, the parasitic cysts found on surgically removed specimens or autopsy material are usually of the bronchiectatic type.

In addition, allergic or toxic reactions seem to play roles in the pathogenesis of pulmonary paragonimiasis by the appearance of epithelioid tubercles due to paragonimus eggs, with plasma cells and eosinophils as well as the vascular lesions (Chyu, 1962a; Soh, 1975).

The degree of the pathologic changes varies mainly depending on the duration of infection, the number of parasites and the host tissue reaction.

Experimental paragonimiasis in dogs and cats (Chyu, 1962a; Yoo and Chyu, 1966; Lee, 1979; Choi et al., 1979; Chi et al., 1982) assists in understanding the pathologic changes in humans.

Sequential pathologic changes occur as follows: Pathologic findings in the thoracic cavity are first noticed 20 days after oral infection. This consists of fibrinous pleuritis with superficial hemorrhage. Only the juveniles are found in the pleural cavity together with turbid effusion at this period. Before this period, inflammatory cell infiltration is seen in the intestinal villi (the 8th day), liver and diaphragm (the 15th day). Paragonimus juveniles are first recognized inside the lung parenchyma by 30 days after infection. This is the period when the lungs show multiple areas of hemorrhage and probable active penetration by worms. Hemorrhagic bronchopneumonia is quite pronounced from this stage through the 45th day. On the 45th day of infection, early alveolar cell proliferation is seen around the worm. On the 60th day, the worm cyst is composed of fibrous scar and heavy inflammatory cellular infiltration and the lining epithelial cells are first noticed, which are thought to be probably transformed alveolar lining cells rather than bronchial epithelial cells. The cyst wall becomes more stable and often shows squamous metaplasia. On the 120th day, hemorrhage is shown in the lumen of the bronchiole in the vicinity of the fluke, and the pleura shows fibrotic thickening. As the infection progresses, the pleura surrounding the lesion is diffusely thickened (Min et al., 1958; Chyu, 1962a; Lee, 1979; Choi et al., 1979; Chi et al., 1982; Choi, 1984a).

Bae et al. (1976) reported that the nature and characteristics of the pulmonary lesion in albino rats produced by P. iloktsuwensis were just the same as those produced by P. westermani.

Laboratory findings frequently seen in paragonimiasis are hypergammaglobulinemia, slight-to-moderate eosinophilia, and an increased erythrocyte sedimentation rate (Yun, 1960; Chyu, 1962c; Lee, 1975).

Extrapulmonary paragonimiasis: Extrapulmonary parasitism with Paragonimus westermani has been reported in the brain (Kim, 1956; Kim, 1957; Graumann et al., 1957; Lee et al., 1958; Kim, 1959; Hong et al., 1959; Oh, 1963), spinal cord (Choi et al., 1956; Suh and Shim, 1959; Park, 1962; Oh and Laursen, 1964), thoracic muscle (Chi, 1957b), subcutaneous tissues (Lee, 1975), liver (Lee, 1975), spleen (Chi et al., 1981), greater omentum (Chi, 1957a; Park et al., 1963), peritoneum (Park et al., 1963; Lee, 1975), pericardium (Lee, 1975), mediastinum (Lee, 1975), uterus (Hong et al., 1982b), fallopian tubes (Chung and Kim, 1968), ovaries (Hong et al., 1982b), and urinary tract (Weinstein et al., 1953; Lee et al., 1959 & 1960) in Korea.

The most commonly involved organ other than the lungs and pleura is known to be the brain (Lee et al., 1958; Lee, 1975). The incidence of cerebral paragonimiasis is higher among males than females. In cerebral paragonimiasis, early granulomatous lesion and, later, mass with calcification and liquefaction, surrounded by fibrous capsule, are the findings frequently encountered. Irregularly-shaped ova are observed
in the abscess cavity. Histopathologic findings of spinal paragonimiasis, usually situated epidurally in the thoracic level, are quite similar to those of cerebral paragonimiasis.

2. Symptomatology

Paragonimiasis is usually insidious in its onset and mildly chronic in its course, but there may be an initial episode of chills and fever. Fulminating cases with fatal termination were also recorded. The symptoms are characteristically referable to the chest, abdomen, lymph glands, or brain.

In pulmonary paragonimiasis, the most remarkable clinical feature is cough and blood-tinged sputum, and less frequently hemoptysis, distressing chest pain, and dyspnea (Lee, 1975; Choi, 1984a). The cough is dry at first and later productive with blood-stained, rusty-brown tenacious sputum most pronounced on rising in the morning.

Occasionally there is profuse hemoptysis following paroxysmal coughing. The manifestations are more severe after physical exertion. There are no characteristic auscultatory findings, but hyper-resonance is present.

X-ray films show patchy, cloudy infiltration of the lungs, nodular shadows, calcified spots, and pleural thickening, with interlobar pleuritis and pleural effusion (Han, 1956; Seol and Byun, 1958; Yun, 1960; Chyu, 1962d; Lee, 1975). Han (1965) reported that CT was more useful for the detection of the worm cysts than simple chest X-ray.

Signs on physical examination may be similar to those observed in bronchopneumonia or bronchiectasis with pleural effusion.

In the abdominal type, the worms produce less definite symptoms. Usually there is dull abdominal pain. Moderate rigidity and tenderness on deep palpation may be present. Lodged in the intestinal wall they provoke diarrhea, with eggs in the stools. Ectopic parasitism in the female genital organ could produce sterility (Hong et al., 1982b).

In the brain the worms are responsible for epilepsy of Jacksonian type, such as occurs in cerebral cysticercosis. In addition, headache (Lee et al., 1958), motor and sensory disturbance, aphasia, hemiplegia, visual disturbance, blindness, and nausea are known to be relatively common in cerebral paragonimiasis. Kim (1959) also reported that seizure (95%) was the most commonly followed by hemiplegia, meningitic syndrome, and mental retardation from 47 cerebral paragonimiasis patients. In endemic foci, cerebral symptoms in children under 15 years of age have sometimes been attributed to infantile paralysis, cerebral hemorrhage, encephalitis, or meningitis, whereas the actual causative agent was this fluke. The most common finding in skull radiographs was intracranial calcification (Oh, 1968) in the posterior temporal and parietal, and the occipital areas. Sometimes the findings usually seen in cerebral tumor might be observed.

In spinal paragonimiasis, paravertebral pain, urinary difficulty, motor disturbance in the lower extremities, increased knee and Achilles jerk, increased muscle tonus in the lower extremities, and positive Babinski sign (Choi et al., 1956) might be observed.

In urinary paragonimiasis, the chief complaints are frequency and difficulty (Lee et al., 1959 & 1960).

DIAGNOSIS AND IMMUNOLOGY (SEROLOGY)

1. Clinical and laboratory diagnosis

Pulmonary symptoms, blood tinged sputum, and eosinophilia in patients in endemic regions are suggestive. At times radiographs aid in diagnosis, although it is difficult to differentiate paragonimiasis from tuberculosis which is common in areas where Paragonimus is endemic. A typical roentgenographic finding is a ring shadowed opacity, 5 to 10 cm, comprising several small contiguous cavities that give the appearance of a bunch of grapes.

Definite diagnosis is based on the finding of characteristic eggs in sputum, aspirated pleural effusion, feces, or from cutaneous lesions. The zinc sulfate flotation method was reported to be
more recommendable for concentration of *Paragonimus* eggs than the formaline-ether sedimentation method (Loh, 1964).

Clinically, the pulmonary paragonimiasis must be distinguished from tuberculosis, bronchospnemonia, bronchiectasis and pleural effusion.

Kim (1970) proposed that the definite diagnosis of paragonimiasis should be established by finding the eggs in the sputum or in the feces, and then recommended at least three repeated examinations.

2. Seroimmunology

In spite of Kim's (1970) proposal, however, since the recovery of the eggs is not easy in mild, latent, ectopic, or therapeutically-affected cases, several immunologic and serologic tests have been applied to determine the availability as diagnostic tools for paragonimiasis or to assess the efficacy of chemotherapeutic agents after treatment. Choi (1978 & 1984b) stressed the availability of serologic tests for the diagnosis of paragonimiasis.

The most commonly used test for screening paragonimiasis was doubtlessly the intradermal reaction to *Paragonimus* antigen (Sadun et al., 1959; Kim and Park, 1974). In general, the skin test is thought to be highly sensitive, specific, and convenient for epidemiologic study. Since it remains positive for years after the death of the fluke, however, it is inadequate for clinical use. Several workers (Chyu, 1958 & 1959; Park, 1963; Chyu and Kim, 1965; Kim, 1969b; Lee, 1974; Choi et al., 1986) have attempted to overcome this handicap of the skin test. Chyu (1958) reported that 60 out of 510 patients clinically diagnosed to be tuberculosis were found to reveal positive reactions for skin test using *Paragonimus* antigen and 13 patients were confirmed by demonstration of *Paragonimus* eggs. Walton and Chyu (1959) and Chyu (1959) introduced the methods of using the skin test antigen and interpreting the results. The test was also applied in the field of pediatrics. Chyu and Kim (1965) found that the peptide antigen was highly sensitive although the antigen titre was low. Kim (1969b) assessed the reliability of the VBS (Veronal buffered saline) antigen based on the demonstration rate for *Paragonimus* eggs. Kim et al. (1969) reported that irregular intradermal reactions were observed in rabbits experimentally sensitized with the antigen. Lee (1974) reported that the skin test with PPF (purified protein fraction) was more sensitive than those with VBS antigens. Choi et al. (1986) fractionated adult *Paragonimus* antigens by means of biochemical methods and assessed the value as an antigen.

Complement-fixing antibodies are known to appear in 1 month after infection with some variations depending on the host species (Chyu, 1962b) and to disappear in humans 3 to 9 months after successful therapy. For this reason, the complement fixation test may be used to assess the results of the chemotherapy. This test, especially a modification by Kohlmer, and also used in the assessment of antigen titre (Chyu and Lee, 1961) showed earlier and more sensitive reactions than the double diffusion test (Han and Woo, 1969).

Precipitation reaction in gels (Ouchterlony method and immunoelectrophoresis) also tested its applicability in the serodiagnosis of paragonimiasis (Kim et al., 1969; Yun and Choi, 1973; Choi et al., 1976; Lee, 1977; Choi and Lee, 1976 & 1981; Lee and Choi, 1983; Lee, 1986) and in evaluation of the therapeutic efficacy of bithionol and niclofolan in experimental paragonimiasis (Choi et al., 1976). According to Choi et al. (1976), the sera from the rats treated with bithionol or niclofolan showed precipitation bands delayed by 2 weeks over the untreated controls. Choi and Lee (1981) reported that the Ouchterlony method was highly sensitive and specific. However, irregular reactions in the immunoelectrophoresis and double diffusion technique was also reported (Lee, 1977).

Choi (1978) suggested the availability of the intradermal test and the serologic tests such as complement fixation (CF), Ouchterlony method (double diffusion in gel), and immunoelectrophoresis (IEP) in the diagnosis of the paragonimiasis. Kim et al. (1983) reported that secretory-excretory antigen from adult *P. westermanni* was
more antigenic than crude extract.

Recently, the enzyme-linked immunoelectrotransfer blotting method (EITB) after sodium dodeyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) has been employed for the assessment of antigenicity of antigen fractions (Kim et al., 1988; Joo et al., 1989a & b). Joo et al. (1989a) compared the reactions of the serum depending on the course of infection to antigen fractions by EITB, and reported that saline extract of Paragonimus recovered from cats 12 weeks after infection was found to be of value for early diagnosis of paragonimiasis. Joo et al. (1989b) reported that protein bands of 91, 60, 21, and 10 kDa from crude antigen showed strong positive reactions with patients sera by EITB. Kim et al. (1986) reported the immunofluorescence technique has been known to be a highly sensitive method for the serologic diagnosis of paragonimiasis (Choi et al., 1975; Kim, 1975; Cho and Soh, 1976; Lee et al., 1980). Choi et al. (1975) reported that the IF technique was found to be more sensitive and specific for serodiagnosis of paragonimiasis than the complement fixation technique. Kim (1975) carried out the IF technique using delipidized adult worm particles fixed on a microscopic slide as antigen, and reported that this modification was found to be available for diagnosis of paragonimiasis. Lee et al. (1980) also reported similar results using cryocut adult worm antigen.

Enzyme-linked immunosorbent assay (ELISA) has been widely applied for serologic diagnosis of paragonimiasis (Cho et al., 1981, 1983 & 1989; Jin et al., 1983). Cho et al. (1981) reported that the sensitivity of the assay was 86% and the specificity, 100%. Cho et al. (1983) stressed that the detection of Paragonimus-specific IgG antibody by micro-ELISA was helpful in detecting the active cases as well as in proper evaluation of the endemicity of human paragonimiasis. Kim et al. (1982), after testing crude and excretory-secretory antigens, suggested that the latter was found to be more useful in detecting anti-Paragonimus antibody. Kim et al. (1986) reported weak antigenicity of eggs compared to adult worm extracts. Cho and Kim (1983) reported detection of the antibody from the pleural effusion. Jin et al. (1983) found that the antisera from sensitized rabbits showed positive reactions by ELISA and the Ouchterlony method 2 weeks after the sensitization. Lee and Choi (1983) proposed that the ELISA, using a small amount of purified Paragonimus antigens, was also highly sensitive with good correspondence with the agar-gel diffusion and counter immunoelectrophoresis techniques. Choi et al. (1984) and Soh et al. (1985) reported the high sensitivity, specificity, and reproducibility of the ELISA technique. Lee et al. (1986) and Park et al. (1987) detected the antibody from the urine of patients. Choi et al. (1986) observed the changing patterns of the antibody titre from cats depending on the intensity of the infection course, and treatment. Lee and Chang (1986) determined the reactivity of crude antigen and purified antigen with the antisera of cats. Yong et al. (1987) reported that the antigens produced by the fluke were detected from the serum of the infected rats 1 week after infection and disappeared in 3 weeks.

In addition to the serodiagnosis of paragonimiasis, several studies on the acquired immunity against Paragonimus have been performed. Chyu (1962b) reported that the recovery rate of adults P. westermani from immunized dogs was significantly lower than that from the unsensitized control. According to Jung et al. (1985), plaque forming cells from the spleens of ICR mice sensitized by injection of metabolites or somatic constituents of P. westermani were detected for the first time 5 days after sensitization. The number of plaque-forming cells was found to be highest on the 10th day, and decreased step by step from the 15th day of sensitization. Moon and Shin (1986) also demonstrated the plaque-forming cells from the spleen of BALB/c mouse sensitized by oral administration of P. westermani metacercariae. Park and Shin (1986), however, reported that protective immunity against P. westermani was acquired by intraperitoneal injections of the metacercariae, but failed by
oral administration of the larvae. Min et al. (1989) assumed that antibody and complement act directly as effectors on functional and morphological impediment of tegument of *P. westermani* metacercaria.

CHEMOTHERAPY

Ten kinds of drugs have been tried in experimental chemotherapy of paragonimiasis in Korea: (1) nilodin (Weinstein et al., 1953); a combined regimen of (2) cetrine hydrochloride and (3) sulfonamides (Weinstein et al., 1953; Graumann et al., 1957); (4) chloroquine phosphate (Graumann et al., 1957; Choi, 1959); (5) bithionol (Kang, 1962a & b; Kang et al., 1963 & 1964a; Chyu et al., 1964; Kim et al., 1964; Soh et al., 1964a; Kim, 1966; Oh, 1967; Kim, 1969a; Kim and Bang, 1974); (6) dehydroemetine hydrochlorides (Lim et al., 1964); (7) niclofolan (Rim et al., 1976; Choi et al., 1976); (8) flubendazole (Soh et al., 1977), and (9) praziquantel (Rim and Chang, 1980; Rim et al., 1981; Soh et al., 1981; Chiu et al., 1982; Kim et al., 1982; Rim, 1983 & 1984; Yoo et al., 1984; Lee, 1984; Lee et al., 1987). Among these drugs, bithionol, niclofolan and praziquantel are known to be effective for the treatment of paragonimiasis. Since medical treatment of paragonimiasis had not been successful before 1960, Kim (1957), suggesting indications of surgical measure, treated 6 cases of pulmonary paragonimiasis by partial lobectomy.

Since 1962, bithionol (Thistoming®) seemed to be the most effective chemotherapeutic drug against *Paragonimus* (Kang, 1962a & b). The inhibition or prevention from infection of *Paragonimus* in both man and dogs may be possible, if sufficient doses of bithionol could be administered continuously for proper period prior to the infection or disease (Kang et al., 1963). Chyu et al. (1964) reported that Thistoming® (bithionol preparation) given in daily doses of 40 mg/kg every other day, decreased the eggs in the sputum markedly from 4 to 7 days after medication and caused them to disappear completely from 5 to 17 days. Bloody sputum stopped from 2 to 10 days.

Bithionol-S-oxide 100 mg per kg body weight every other day or daily of varying periods is highly effective to cats, dogs and monkeys with paragonimiasis. Efficacy of the agent against paragonimiasis varied depending on the host species and on the intensity of the infection (Kim et al., 1964). When bithionol in doses of 0.6 ~2.5 gm every other day was given to 19 with paragonimiasis, the cough and bloody patients sputum disappeared or reduced to below clinical level, converting to egg negative (Soh et al., 1964).

Kim (1966) stressed that Thistoming® was most effective against paragonimiasis, more than cetrine hydrochloride with chloroquine diposphate and chloroquine phosphate only. Bithionol is effective in the acute phases of cerebral paragonimiasis, especially meningitis, whereas it is of no benefit in chronic stabilized cases (Oh, 1967). Kim (1969a) and Kim and Bang (1974) made a follow-up study to evaluate the efficacy of mass chemotherapy for the control of paragonimiasis, and reported that continuous and intense chemotherapy may be able to bring paragonimiasis under control.

Rim et al. (1976) reported that niclofolan was a very promising drug and highly effective for human paragonimiasis with a daily dose of 2.0 mg/kg body weight for 3 days, and it was also effective in experimentally infected dogs and cats with paragonimiasis in 2 doses of 2.0 mg/kg body weight on alternate days with no toxic manifestations. Choi et al. (1976) reported that the sera from rats infected with *Paragonimus*, and after treatment with bithionol or niclofolan preparations, began to show precipitin bands against *Paragonimus* antigen 8 weeks after the infection, and in the untreated control rats showed 2 weeks earlier.

Recently, it was found by *in vivo* and *in vitro* studies that praziquantel was more effective and safer than niclofolan. Therefore, praziquantel was a promising drug for the treatment of paragonimiasis (Rim and Chang, 1980). Ten
patients who had received 2×25 mg/kg body weight for 3 consecutive days were completely cured at 4-month follow-up examinations (Rim et al., 1981). At the same time, Soh et al. (1981) reported that 31 cases of paragonimiasis were treated with praziquantel in doses of 25 mg/kg body weight on 1 day and the same daily dose on 2 consecutive days. Clinical complaints improved within 1 or 2 months, and parasitological egg negative in sputum was achieved by the 2-day regimen, but not all in 1-day treatment. Moreover, abnormal radiologic findings of the chest disappeared 1 year after treatment with praziquantel (Rim, 1984).

Chiu et al. (1982) carried out electron microscopic studies for the effects of praziquantel on the morphological changes of Paragonimus. Experimentally infected dogs were given praziquantel 3×25 mg/kg for 3 days or 3×50 mg/kg for 3 days. Each dog was autopsied at 24 hours to 7 days after the last medication, and the lesions with Paragonimus worms were observed. As a result, no living worm was found in the lungs of the dogs. Scanning electron microscopic observations revealed that the bleb-like structures were formed at the papillae near two suckers and the host cells of the defense system attached to the tegumental vacuoles were caused by the bursting of the blebs. Yoon et al. (1984) and Lee (1984) also reported similar results to those of Chiu et al. (1982).

Lee et al. (1987) observed the in vitro effects of praziquantel on P. westermani and suggested that the effects, immobilization, vacuolation of worm tissue, and disintegration of the reproductive organs seemed more related with incubation time than with drug concentration.

In general, bithionol, thiobis-dichlorophenol, 30 to 50 mg orally, per kilogram of body weight every day for 10 to 15 days, is known to be curative with a cure rate of 90 percent. Praziquantel, at a dose of 20 mg per kilogram t.i.d. for 2 consecutive days, has been used. Owing to a narrow safety margin of niclofolan (Hong et al., 1982a) and the necessity for bithionol to be administered over a long term, praziquantel, well-tolerated by patients (Rim, 1984), has been preferred by clinicians to the others.

PREVENTION AND CONTROL

The control of paragonimiasis should include the following procedures: (1) reduction of the sources of infection in human beings by chemotherapy, (2) education in personal prophylaxis to abstain from eating raw, freshly salted, or inadequately-cooked crabs or crayfish, and from contaminating fingers or kitchen utensils with the metacercarial cysts while preparing infected crustaceans for cooking, (3) control of molluscan and crustacean intermediate hosts, and (4) sanitary control of human excreta (Chyu, 1966; Soh et al., 1986). Among these, the mass treatment of patients with bithionol (Kim, 1969 b) or praziquantel and public education are more practical than the other methods, since the elimination of reservoir hosts and intermediate hosts is not feasible.

In Korea, the juice of crushed crayfish had been used as a remedy for measles, and thus served as a source of Paragonimus infection. According to Loh (1966 a), 15.4% of the housewives answered that their children had taken the crushed crayfish juice orally for the treatment of measles. About 50% of Koreans were in the habit of eating crayfish or crabs, raw or boiled.

Since immersion of the infected crustacean host in rice wine or strong brine for a short time will not kill the cysts, it is imperative that the infested crustaceans be boiled or fried in deep fat to insure against infection (Loh, 1666 b; Kim, 1967; Lee and Nam, 1977). It was suggested that eating raw meat of paratenic hosts such as wild boar would be a route of infection (Kim and Lee, 1970; Lee et al., 1976). Human infection may also come from drinking water containing the metacercariae freed from the dead crayfish (Loh et al., 1969).

Loh (1966 b) reported that boiling the crayfish for 30 seconds, or soaking in Japanese soy sauce for about 1 week killed all of the metacercariae. Lee and Nam (1977) suggested that some metacer-
cariae in the crab, *Eriocheir japonicus*, remained alive even after 10 days in soy-bean sauce.

Kim (1967) also reported the effectiveness of the temperature over 50°C, and Korean or Japanese soy-bean sauce in killing the metacer- cariae.

Recent surveys revealed that there was a significant reduction in the prevalence of paragonimiasis among people, in the population density of the intermediate hosts, and in the incidence of larvae from intermediate hosts. Choi et al. (1983) indicated that broad spray of pesticides and construction of dams would affect the ecosystem to diminish the intermediate hosts.

REFERENCES

Chi, H.C. (1957b) A case of paragonimiasis accom-

Rim, H.J., Kim, M.S., Ha, J.H. and Chang, D.S. (1976) Experimental chemotherapeutic effects of niclofolan(Bayor 9015, Bilevon) on the animals infected with Paragonimus westermani or P.

