Hydrogenosomal activity of *Trichomonas vaginalis* cultivated under different iron conditions

Yong-Seok KIM¹, Hyun-Ouk SONG², Ilk-Hwa CHOI², Soon-Jung PARK³ and Jae-Sook RYU²*

¹Department of Biochemistry and Molecular Biology,
²Department of Parasitology, The Brain Korea 21 Project, Hanyang University College of Medicine, Seoul 133-791,
³Department of Parasitology and Institute of Tropical Medicine, The Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 120-752, Korea

Abstract: To evaluate whether iron concentration in TYM medium influence on hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of *Trichomonas vaginalis*, trophozoites were cultivated in iron-depleted, normal and iron-supplemented TYM media. The mRNA of hydrogenosomal enzymes, such as pyruvate ferredoxin oxidoreductase (PFOR), hydrogenase, ferredoxin and malic enzyme, was increased with iron concentrations in *T. vaginalis* culture media, measured by RT-PCR. Hydrogenosomal membrane potentials measured with DiOC₆ also showed similar tendency, e.g. *T. vaginalis* cultivated in iron-depleted and iron-supplemented media for 3 days showed a significantly reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Therefore, it is suggested that iron may regulate hydrogenosomal activity through hydrogenosomal enzyme expression and hydrogenosomal membrane potential.

Key words: *Trichomonas vaginalis*, hydrogenosomal enzyme, gene expression, hydrogenosomal membrane potential, iron, DiOC₆, PFOR, hydrogenase, malic enzyme, ferredoxin
level, gene expression of surface immunogens and resistance to complement lysis provided by immune evasion strategy of the *T. vaginalis* (Lehker et al., 1991; Lehker and Alderete, 1992; Alderete et al., 1995a; Alderete et al., 1995b). Our previous data have shown that the virulence of *T. vaginalis* is reduced under iron-depleted conditions (Ryu et al., 2001). However, it is not known whether iron also affects hydrogenosomal enzyme gene expression. In this study, we examined whether iron concentration in a complex Trypticase-yeast extract-maltose (TYM) medium influences hydrogenosomal enzyme gene expression and hydrogenosomal membrane potential of *T. vaginalis*.

Trichomonads were grown in TYM medium, supplemented with 10% heat-inactivated horse serum (Diamond, 1957). The iron-deficient medium was prepared by adding 2,2'-dipyridyl (Sigma, St. Louis, Missouri, USA) at 100 µM final concentration, whereas the iron-supplemented medium was prepared with the addition of ferrous sulfate at a final concentration of 360 µM (Ryu et al., 2001). Iron concentrations of iron-deficient, normal, and iron-supplemented media were 1.1 µM, 34.8 µM, and 393 µM, respectively, as determined by an automatic chemical analyzer (Hitachi Inc, Tokyo, Japan). The 2,2'-dipyridyl, used for iron-deficient conditions, is chemically recognized as a specific Fe^{2+} chelator, with very little reactivity with Fe^{3+}. Because of its small size, hydrophobic nature, and its rapid permeation into cells, dipyridyl acts intracellularly (Horky et al., 1998).

Early log-phase trophozoites (2 x 10^5) were inoculated into 5 ml of normal TYM, iron-deficient TYM, and iron-supplemented TYM media. The next day, the same number of trichomonads were transferred into fresh media and grown for another 24 hr. Subculture of trophozoites was done in the same manner for 4 days (Ryu et al., 2001).

For RT-PCR, total RNA was isolated using the Trizol reagent (Invitrogen, Carlsbad, California, USA). Total RNA from *T. vaginalis* grown in iron-depleted, normal and iron-enriched media for 4 days were reverse transcribed with oligo (dT) 15 primer using MMLV reverse transcriptase (Invitrogen). PCR amplification of cDNA was carried out using gene-specific primers (Table 1). The PCR reaction consisted of 1 unit of Taq polymerase (Takara, Otsu, Japan), 2 µl of 10 mM dNTP mix, 2 µl of 10x PCR buffer, 5.2 µl of 5 M betaine, 0.5 µl of DMSO, 20 pM of forward and reverse primers, and 2.0 µl of template cDNA in a total volume of 20 µl. Cycling was performed using the conditions of initial DNA denaturation at 94°C for 5 min and 25 rounds of denaturation (94°C for 1 min), annealing (65°C for 1 min), and extension (72°C for 2 min). β-tubulin was amplified as an internal control.

After 25 cycles of amplification by PCR, 10 µl of the PCR products were electrophoresed in 1% agarose gel containing 0.5 µg/ml ethidium bromide, and photographed under ultraviolet light. The band intensity

<table>
<thead>
<tr>
<th>Hydrogenosomal enzyme</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferredoxin (genebank ID= 39939566) CDS-nt^a) 1</td>
<td>5’ ATGCTCCTCAGTGCTCTCC 3’ (forward)</td>
</tr>
<tr>
<td>Ferredoxin (genebank ID= 39939566) CDS-nt^a) 312</td>
<td>5’ TTAGACCTCGAAGTACCAAC 3’ (reverse)</td>
</tr>
<tr>
<td>Hydrogenase (genebank ID= 1171116) CDS-nt^a) 778</td>
<td>5’ GGAAAGCAAGAGACAGGTGC 3’ (forward)</td>
</tr>
<tr>
<td>Hydrogenase (genebank ID= 1171116) CDS-nt^a) 1101</td>
<td>5’ TGGATCTCCAGCGTGAG 3’ (reverse)</td>
</tr>
<tr>
<td>Malic enzyme (genebank ID= 33243007) CDS-nt^a) 144</td>
<td>5’ CTCGAGATCCAGAAGAAG 3’ (forward)</td>
</tr>
<tr>
<td>Malic enzyme (genebank ID= 33243007) CDS-nt^a) 456</td>
<td>5’ TGGAGACGCTTCGATTT 3’ (reverse)</td>
</tr>
<tr>
<td>Pyruvate:ferredoxin oxidoreductase (genebank ID= 622957) CDS-nt^a) 3015</td>
<td>5’ TGCTGCTCGTTACAAAGG 3’ (forward)</td>
</tr>
<tr>
<td>Pyruvate:ferredoxin oxidoreductase (genebank ID= 622957) CDS-nt^a) 3337</td>
<td>5’ CGTCGAGGTGTAGTCTGGC 3’ (reverse)</td>
</tr>
<tr>
<td>Beta-tubulin (genebank ID= 797282) CDS-nt^a) 480</td>
<td>5’ CCCAGATCGTATCCTCTCCA 3’ (forward)</td>
</tr>
<tr>
<td>Beta-tubulin (genebank ID= 797282) CDS-nt^a) 791</td>
<td>5’ AGACGTTGGAATGGAACAG 3’ (reverse)</td>
</tr>
</tbody>
</table>

^a)CDS-nt = nucleotide number in coding sequence of the DNA
was quantified using the Quantity One program (Bio-
Rad, Hercules, California, USA).

Next, we measured hydrogenosomal membrane
potential of *T. vaginalis* cultivated in different iron
concentration of TYM media by FACS analysis after
DiOC₆ staining. *T. vaginalis* cultured in iron-deficient,
normal, and iron-supplemented media were washed
with cold PBS, after which cells (5 x 10⁵/ml) were
incubated with DiOC₆ (40 nM in PBS) for 15 min at
37°C (Chose et al., 2002). Flow cytometric analysis for
fluorescent intensity was performed on at least 5,000
cells from each sample with a FACSCalibur with
CellQuest pro software (BD Bioscience, Germany).

The hydrogenosomal enzyme expressions and
hydrogenosomal membrane potentials of *T. vaginalis*
cultivated in iron-supplemented and iron-depleted
media were compared with those of normal TYM
media.

As a result of RT-PCR, mRNA levels of PFOR,
hydrogenase and malic enzyme were reduced 61-83%
in iron-depleted media although ferredoxin mRNA
showed same level as trophozoites in normal media
(Fig. 1). Moreover, trophozoites grown in iron-supple-
mented TYM media had higher gene expression of
110-120%. Therefore, the gene expressions of
hydrogenosomal enzyme such as PFOR, hydrogenase,
ferredoxin and malic enzyme were thought to be
increase with iron concentration in *T. vaginalis* culture.

Fig. 1. RT-PCR of hydrogenosomal enzymes of *T. vaginalis* cultivated in iron-depleted, normal and iron-supplemented
TYM media. A. PCR results of cDNA from *T. vaginalis* cultivated from iron-depleted TYM containing 100 µM 2,2'-
dipyridyl (D), from normal TYM (N), and from iron-supplemented TYM media containing 360 µM ferrous sulfate (F). B. Densitometry of PCR band from amplified hydrogenosomal enzyme of *T. vaginalis* was measured by Quantity One (version 4.6.2, BioRad, USA) and compensated by the density of PCR band from amplified β-tubulin of the same *T. vaginalis*. The
results were marked as relative density. PFOR = pyruvate ferredoxin oxidoreductase, HYD = hydrogenase, FD = ferre-
adoxin, ME = malic enzyme.
media.

We identified that trophozoites in iron-rich media showed increased band intensity (128 kDa) with anti-PFOR antibody compared with that of normal media by Western blot (data not shown). Therefore, it is assumed that increased PFOR mRNA expression of trophozoites in iron-supplemented media may be correlated with increased PFOR protein. The present study supports the results of Gorrell (1985), which showed that *T. vaginalis* grown in iron-rich medium increased concentrations of iron-sulfur proteins, including ferredoxin and PFOR.

Next, hydrogenosomal membrane potential of *T. vaginalis* in iron-depleted media was decreased with cultivation time. In contrast, trophozoites grown in iron-supplemented media showed increased hydrogenosomal potentials in time dependent manner. After 3 days of incubation, *T. vaginalis* in iron-depleted and iron-supplemented media exhibited significant reduced and enhanced hydrogenosomal membrane potential compared with that of normal TYM media, respectively. Hydrogenosomal membrane potentials of trophozoites grown in each media for 4 days showed 50% lower level in iron-deficient media and 143% higher fluorescent intensity in iron-rich media (Fig. 2).

T. vaginalis lacks morphologically recognizable mitochondria but contains hydrogenosomes which is homologous to mitochondria of eukaryotes (Müller, 1993). These characteristic organelles are predominantly spherical or somewhat elongated structures, about 0.5 µm in diameter. Hydrogenosome had been recognized by light microscopists for a long time, as paraxostylar and paracostal granules. They were named hydrogenosomes because they produce molecular hydrogen as a metabolic end product. The hydrogenosomes represent an integral part of the energy metabolism of *T. vaginalis* because certain characteristic steps of carbohydrate metabolism linked to substrate level phosphorylation occur in this organelle.

T. vaginalis have been developed resistance to metronidazole in a multistep process based on gradual decrease and eventual loss of activities of the hydrogenosomal protein such as PFOR, hydrogenase, ferredoxin and malic enzyme involved in drug-activating pathway, by prolonged exposure to increasing concentrations of metronidazole (Kulda et al., 1993;...

Fig. 2. Mean fluorescent intensities (MFI) of hydrogenosomal membrane potentials of *Trichomonas vaginalis* cultivated in normal (untreated, □), iron-depleted (Dipyridyl, ■) and iron-supplmented (Fe, ■) TYM media from one to four day of infection, measured with flow cytometry after DiOC₆ staining. The data are expressed as the means ± SE of 3 separate experiments. *P* value < 0.05.
Rasoloson et al., 2002). Quon et al. (1992) confirmed that metronidazole-resistant *T. vaginalis* strains isolated from trichomoniasis patients showed reduced transcriptions of the ferredoxin gene. The decreased hydrogenosomal enzyme expression of *T. vaginalis* cultivated in iron-depleted media in the present study seems like to that of metronidazole-resistant strain artificially developed with increasing concentration of metronidazole.

DiOC₆ has been generally used for detection of apoptotic cells by measurement of decreased mitochondrial membrane potentials (Kim et al., 2000; Kang et al., 2006) although this drug was also used for observation of mitochondria, endoplasmic reticulum and sarcoplasmic reticulum in eukaryotes (Habicht and Brune, 1980; Johnson et al., 1981; Terasaki et al., 1986). Chose et al. (2002) applied DiOC₆ marker for measuring dissipation of hydrogenosomal membrane potential of amitochondriate, *T. vaginalis*, pretreated with toxic agents in order to determine apoptosis of trophozoites, and observed a weak but significant membrane potential dissipation in pro-apoptotic drugs-treated trichomonads.

In contrast, in this study, we tried to use DiOC₆ for measuring of hydrogenosomal membrane potentials of live trichomonads (showing 100% viability in trypan blue exclusion test) cultivated in different iron condition. The hydrogenosomal membrane potentials of trichomonads increased with increment of iron contents in TYM media, and this result had similar tendency with results of the hydrogenosomal enzyme mRNA analysis.

Until now, reports on relation between hydrogenosomal membrane potentials and hydrogenosomal enzyme expression could not be found. Viable trichomonads (from normal and iron-rich media) pretreated with anti-PFOR antibody showed decreased hydrogenosomal membrane potentials with DiOC₆ staining (data not shown).

In our previous report, the virulence of *T. vaginalis* in iron depleted condition is described to be reduced through decrease in subcutaneous abscess formation, cytoadherence, cytotoxicity, and proteinase activity (Ryu et al., 2001). Hydrogenosomal enzyme expression and hydrogenosomal membrane potential were also decreased under the same iron-depleted media described by Ryu et al. (2001). Taking this altogether, it is expected that iron may regulate the virulence of *T. vaginalis* via hydrogenosomal activity. In further study, it should be evaluated whether hydrogenosomal activity under different iron condition may influence on virulence of *T. vaginalis*.

REFERENCES

Kang JH, Song HO, Ryu JS, Shin MH, Kim JM, Cho YS,

