| Home | E-Submission | Sitemap | Contact us |  
top_img
Korean J Parasitol > Volume 7(3):1969 > Article

Original Article
Korean J Parasitol. 1969 Dec;7(3):143-152. English.
Published online Mar 20, 1994.  http://dx.doi.org/10.3347/kjp.1969.7.3.143
Copyright © 1969 by The Korean Society for Parasitology
Study on the 14C-glucose metabolism by Clonorchis sinensis
Il Kwon Kang,Soon Hyung Lee and Byong Seol Seo
Department of Parasitology and Institute of Endemic Diseases, College of Medicine, Seoul National University, Korea.
Abstract

Radioactive 14C-glucose(U) was given to Clonorchis sinensis in Tris buffer medium, in corder to trace the metabolic fate of the labelled carbon. The labelled carbon from glucose enters into intermediary metabolites and end products of anaeroblic glycolysis, Embden-Meyerhof pathway, and of aerobic Krebs cycle. These product were identified by one or two-dimensional paper chromatography in combination with autoradoigraphy.

1) The labelled metabolites detected in this experiment corresponded to pyruvic acid, latic acid, malic acid, succinic acid and fumaric acid.

2) Amino acids, such as alanine, aspartic acid, glutamic acid, valine, theronine, and serine, derived by the degradation of 14C-glycose were also found.

3) Labelled compounds behaving like alanine, aspartic acid and glutamic acid were observed in the chroma to gram of incubation medium.

4) The preciptation which suggests a positive reaction for protein occured when absolute ethanol was added to the incubation medium.

Figures


Fig. 1
One dimensional chromatogram of organic acid. Solvent: Ethanol/conc. ammonia/water (80 : 5 : 15). Spots from Clonorchis sinensis (G) may correspond to the authentic materials; A-citric acid, B-malic acid, C-succinic acid, D-fumaric acid, E-lactic acid, and F-pyruvic acid.


Fig. 2
One dimensional chromatogram of organic acid. Solvent: Ethyl cellosolve/conc. ammonia/water (80 : 5 : 15). Spots from Clonorchis sinensis (G) may correspond to the authentic materials; A-citric acid, B-malic acid, C-succinic acid, D-fumaric acid, E-lactic acid, and F-pyruvic acid.


Fig. 3
Two dimensional chromatogram of organic acid. Solvents for Ist direction, Ethanol/conc. ammonia/water (80 : 5 : 15). and for IInd direction, ethyl cellosolve/conc. ammonia/water (80 : 5 : 15). Spots from Clonorchis sinensis may correspond to; A-citric acid, B-malic acid, C-succinic acid, D-lactic acid, E-pyruvic acid, and F-fumaric acid.


Fig. 4
One dimensional chromatogram of amino acids. Solvent: Butanol/acetic acid/water.(4:1:5). Spots from the fluke Clonorchis sinensis (G) may correspond to A-alaninem B-glutamic acid, C-aspartic, D-valine, E-threonine, F-serine.


Fig. 5
Two dimensional chromatography of amino acids from Clonorchis sinensis. Solvents for Ist direction, Butanol/propionic acid/water(45.9:23.4:30.6), and for IInd direction, Phenol/water(72:8). Spots from the sample may correspond to; A-aspartic acid, B-glutamic acid, C-serine, D-threonine, E-alanine and F-valine.

References
1. Agosin M, Aravena LC. Anaerobic glycolysis in homogenates of Trichinella spiralis larvae. Exp Parasitol 1959;8(1):10–30.
  
2. Agosin M, Aravena L. Studies on the metabolism of Echinococcus granulosus. III. Glycolysis, with special reference to hexokinases and related glycolytic enzymes. Biochim Biophys Acta 1959;34:90–102.
  
3. Agosin M, Aravena L. Studies on the metabolism of Echinococcus granulosus. IV. Enzymes of the pentose phosphate pathway. Exp Parasitol 1960;10:28–38.
  
4. Brand T, et al. Exp Parasit 1964;15:410–429.
 
5. Bryant C, Williams JP. Some aspects of the metabolism of the liver fluke, Fasciola hepatica L. Exp Parasitol 1962;12:372–376.
  
6. Bueding E, Yale HW. Production of alpha-methylbutyric acid by bacteria-free Ascaris lumbricoides. J Biol Chem 1951;193(1):411–423.
 
7. Bueding E, Mackinnon JA. Studies of the phosphoglucose isomerase of Schistosoma mansoni. J Biol Chem 1955;215(2):507–513.
 
8. Bueding E, Farrow GW. Identification of succinic acid as a constituent of the perienteric fluid of Ascaris lumbricoides. Exp Parasitol 1956;5(4):345–349.
  
9. Bueding E, Mansour JM. The relationship between inhibition of phosphofructokinase activity and the mode of action of trivalent organic antimonials on Schistosoma mansoni. Br J Pharmacol Chemother 1957;12(2):159–165.
 
10. Bueding E, Orrell SA Jr. Sedimentation coefficient distributions of cold water-extracted glycogens of Fasciola hepatica. J Biol Chem 1961;236:2854–2857.
 
11. Costello LC, Brown H. Aerobic metabolism of unembryonated eggs of Ascaris lumbricoides. Exp Parasitol 1962;12:33–40.
  
12. Grollman S, Costello LC. Studies on the reactions of the Krebs cycle in Strongyloides papillosus infective larvae. Exp Parasitol 1959;8(1):83–89.
  
13. Daugherty JW. The effect of host castration and fasting on the rate of glycogenesis in Hymenolepis diminuta. J Parasitol 1956;42(1):17–20.
  
14. Esch GW. Comparative Carbohydrate Metabolism of Adult and Larval Multiceps Serialis. J Parasitol 1964;50:72–76.
  
15. Fairbairn D, Wertheim G, Harpur RP, Schiller EL. Biochemistry of normal and irradiated strains of Hymenolepis diminuta. Exp Parasitol 1961;11:248–263.
  
16. Farber E, Bueding E. Histochemical localization of specific oxidative enzymes. V. The dissociation of succinic dehydrogenase from carriers by lipase and the specific histochemical localization of the dehydrogenase with phenazine methosulfate and tetrazolium salts. J Histochem Cytochem 1956;4(4):357–362.
  
17. Fernando MA. Metabolism of hookworms. I. Observations on the oxidative metabolism of free living third stage larvae of Necator americanus. Exp Parasitol 1963;13:90–97.
  
18. Fernando MA, Wong HA. Metabolism of Hookworms. II. Glucose Metabolism and Glycogen Synthesis in Adult Female Ancylostoma Caninum. Exp Parasitol 1964;15:284–292.
  
19. Goldberg E. Studies on the intermediary metabolism of Trichinella spiralis. Exp Parasitol 1957;6(4):367–382.
  
20. Goldberg E. The glycolytic pathway in Trichinella spiralis larvae. J Parasitol 1958;44(4, Section 1):363–370.
  
21. Goldberg E, Nolf LO. Succinic dehydrogenase activity in the cestode Hymenolepis nana. Exp Parasitol 1954;3(3):275–284.
  
22. Graff DJ. Metabolism of C14-Glucose by Moniliformis Dubius (Acanthocephala). J Parasitol 1964;50:230–234.
  
23. Hahn SS, et al. Korean J Int Med 1961;4:281–285.
24. Hahn SS, et al. Korean J Int Med 1962;5:357–360.
25. Hamajima F. Jpn J Parasit 1966;15:239–245.
26. Jones CA, et al. J Parasit 1955;41(Sect2):48–49.
27. Kilezan A. J Parasit 1963;49:862–863.
 
28. Laurie JS. The in vitro fermentation of carbohydrates by two species of cestodes and one species of acanthocephala. Exp Parasitol 1957;6(3):245–260.
  
29. Lee EH, Seo BS. [Studies On Malic Dehydrogenase Activity In Parasitic Helminths]. Korean J Parasitol 1967;5(3):125–133.
 
30. Lee SH. [Studies On Lactic Dehydrogenase Activity In Parasitic Helminths]. Korean J Parasitol 1967;5(1):5–16.
 
31. Lee SI. [Metabolism Of C(14)-Lactate By Fasciola Hepatica And Eurytrema Pancreaticum]. Korean J Parasitol 1965;3(1):10–18.
 
32. Mancilla R, Agosin M. The phosphoglucose isomerase from Trichinella spiralis larvae. Exp Parasitol 1960;10:43–50.
  
33. Mansour TE. Studies on the carbohydrate metabolism of the liver fluke Fasciola hepatica. Biochim Biophys Acta 1959;34:456–464.
  
34. Mansour TE. Effect of serotonin on glycolysis in homogenates from the liver fluke Fasciola hepatica. J Pharmacol Exp Ther 1962;135:94–101.
 
35. Min YO, Seo BS. Studies on transaminase reactions in some parasitic helminths. Korean J Parasitol 1966;4(2):7–13.
 
36. Park CJ, Seo BS. [Studies On Phosphatase Activity In Some Parasitic Helminths]. Korean J Parasitol 1967;5(3):115–124.
 
37. Park SC, Koo BR, Seo BS. [Autoradiographic Study On Eurytrema Pancreaticum]. Korean J Parasitol 1967;5(3):135–138.
 
38. Phifer K. Aldolase in the larval form of Taenia crassiceps. Exp Parasitol 1958;7(3):269–275.
  
39. Rathbone L. Oxidative metabolism in Ascaris lumbricoides from the pig. Biochem J 1955;61(4):574–579.
 
40. Read CP. Exp Parasit 1951;1:1–18.
 
41. Read CP. Exp Parasit 1952;1:353–362.
 
42. Read CP. Contributions to cestode enzymology. II. Some anaerobic dehydrogenases in Hymenolepis diminuta. Exp Parasitol 1953;2(4):341–347.
  
43. Read CP. Carbohydrate metabolism of Hymenolepis diminuta. Exp Parasitol 1956;5(4):325–344.
  
44. Read CP. The role of carbohydrates in the biology of cestodes. III. Studies on two species from dogfish. Exp Parasitol 1957;6(3):288–293.
  
45. Read CP, Rothman AH. The role of carbohydrates in the biology of cestodes. II. The effect of starvation on glycogenesis and glucose consumption in Hymenolepis. Exp Parasitol 1957;6(3):280–287.
  
46. Read CP, Rothman AH. The carbohydrate requirement of Moniliformis (Acanthocephala). Exp Parasitol 1958;7(2):191–197.
  
47. Read CP, et al. Exp Parasit 1958;7:218–223.
48. Rhodes MB, Marsh CL, Kelley GW Jr. Studies in Helminth Enzymology. 3. Malic Dehydrogenases of Ascaris Suum. Exp Parasitol 1964;15:403–409.
  
49. Rim HJ. Seoul J Med 1963;4:51–60.
50. Rim HJ, Kim KS, Seong SH, Rhee SD, On BJ, Lee HK. [Metabolism of C(14)-glucose by Ascaridia galli]. Korean J Parasitol 1965;3(3):107–111.
 
51. Rim HJ, Seong SH, Park CJ, Rhee SD, Rhee SD, Lee HK. [Metabolism of C(14)-glucose by Moniezia expansa and Diphyllobothrium mansoni]. Korean J Parasitol 1965;3(3):112–116.
 
52. Saz HJ, Hubbard JA. The oxidative decarboxylation of malate by Ascaris lumbricoides. J Biol Chem 1957;225(2):921–933.
 
53. Schwabe CW. Observations on the respiration of free-living and parasitic Nippostrongylus muris larvae. Am J Hyg 1957;65(3):325–337.
 
54. Seo BS, Rim HJ, Kim KS, Rhee SD, Lim SJ, Lee WS. Metabolism Of C(14)-Glucose By Fasciola Hepatica. Korean J Parasitol 1964;2(3):170–174.
 
55. Seo BS, Rim HJ, Kim KS, Lee MS, Kim YU, Song HY. Metabolism Of C(14)-Glucose By Eurytrema Pancreaticum. Korean J Parasitol 1964;2(3):175–178.
 
56. Seo BS, Rim HJ, Lee SI, Park DK, Moon SC. [Metabolism of C(14)-glucose by Paramphistomum cervi]. Korean J Parasitol 1965;3(1):5–9.
 
57. Seo BS, Rim HJ, Lee SI, Rhee SD, Lee WS, Lee JR. Metabolism Of C(14)-Glucose By Plerocercoid Of Diphyllobothrium Sp. Korean J Parasitol 1965;3(1):1–4.
 
58. Smith MJ, Moses V. Uncoupling reagents and metabolism. 1. Effects of salicylate and 2:4-dinitrophenol on the incorporation of C from labelled glucose and acetate into the soluble intermediates of isolated rat tissues. Biochem J 1960;76(3):579–585.
 
59. Tada I, et al. Jpn J Parasit 1961;10:490.
60. Thorsell W, Appelgren LE, Kippar M. Distribution and fate of 2-C14-glucose in the liver fluke, Fasciola hepatica L., after short in vitro incubation. Z Parasitenkd 1968;31(2):113–121.
  
61. Vernberg WB, Hunter WS. Studies on oxygen consumption in digenetic trematodes. IV. Oxidative pathways in the trematode Gynaecotyla adunca (Linton, 1905). Exp Parasitol 1960;9:42–46.
  
62. Waitz JA. Glycolytic enzymes of the cestode Hydatigera taeniaeformis. J Parasitol 1963;49:285–293.
  
63. Waitz JA, Schardein JL. Histochemical Studies of Four Cyclophyllidean Cestodes. J Parasitol 1964;50:271–277.
  
64. Warren LG. J Parasit 1973;49(5):Sect2,52.
Editorial Office
Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University,
2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea.
Tel: +82-31-299-6251   FAX: +82-1-299-6269   E-mail: kjp.editor@gmail.com
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © 2022 by The Korean Society for Parasitology and Tropical Medicine.     Developed in M2PI